For full functionality of this site it is necessary to enable JavaScript. Here are the instructions how to enable JavaScript in your web browser.

Welcome | FaceBase

The trusted data resource for craniofacial researchers worldwide
FaceBase is a collaborative NIDCR-funded project .

FaceBase Data Summary




  1. Comparing 2D and 3D representations for face-based genetic syndrome diagnosis

    Bannister, Jordan J.; Wilms, Matthias; Aponte, J. David; Katz, David C.; Klein, Ophir D.; Bernier, Francois P.; Spritz, Richard A.; Hallgrímsson, Benedikt; Forkert, Nils D.. European Journal of Human Genetics. vol. 31(9), 1010–1016. September 2023.

  2. Privacy, bias and the clinical use of facial recognition technology: A survey of genetics professionals

    Aboujaoude, Elias; Light, Janice; Brown, Julia E. H.; Boscardin, W. John; Hallgrímsson, Benedikt; Klein, Ophir D.. American Journal of Medical Genetics Part C: Seminars in Medical Genetics. vol. 193(3), e32035. September 2023.

    Abstract Facial recognition technology (FRT) has been adopted as a precision medicine tool. The medical genetics field highlights both the clinical potential and privacy risks of this technology, putting the discipline at the forefront of a new digital privacy debate. Investigating how geneticists perceive the privacy concerns surrounding FRT can help shape the evolution and regulation of the field, and provide lessons for medicine and research more broadly. Five hundred and sixty‐two genetics clinicians and researchers were approached to fill out a survey, 105 responded, and 80% of these completed. The survey consisted of 48 questions covering demographics, relationship to new technologies, views on privacy, views on FRT, and views on regulation. Genetics professionals generally placed a high value on privacy, although specific views differed, were context‐specific, and covaried with demographic factors. Most respondents (88%) agreed that privacy is a basic human right, but only 37% placed greater weight on it than other values such as freedom of speech. Most respondents (80%) supported FRT use in genetics, but not necessarily for broader clinical use. A sizeable percentage (39%) were unaware of FRT’s lower accuracy rates in marginalized communities and of the mental health effects of privacy violations (62%), but most (76% and 75%, respectively) expressed concern when informed. Overall, women and those who self‐identified as politically progressive were more concerned about the lower accuracy rates in marginalized groups (88% vs. 64% and 83% vs. 63%, respectively). Younger geneticists were more wary than older geneticists about using FRT in genetics (28% compared to 56% “strongly” supported such use). There was an overall preference for more regulation, but respondents had low confidence in governments’ or technology companies’ ability to accomplish this. Privacy views are nuanced and context‐dependent. Support for privacy was high but not absolute, and clear deficits existed in awareness of crucial FRT‐related discrimination potential and mental health impacts. Education and professional guidelines may help to evolve views and practices within the field.

  3. Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis

    Jing, Junjun; Feng, Jifan; Yuan, Yuan; Guo, Tingwei; Lei, Jie; Pei, Fei; Ho, Thach-Vu; Chai, Yang. Nature Communications. vol. 13(1), 4803. August 2022.

    Cranial neural crest cells are an evolutionary innovation of vertebrates for craniofacial development and function, yet the mechanisms that govern the cell fate decisions of postmigratory cranial neural crest cells remain largely unknown. Using the mouse molar as a model, we perform single-cell transcriptome profiling to interrogate the cell fate diversification of postmigratory cranial neural crest cells. We reveal the landscape of transcriptional heterogeneity and define the specific cellular domains during the progression of cranial neural crest cell-derived dental lineage diversification, and find that each domain makes a specific contribution to distinct molar mesenchymal tissues. Furthermore, IGF signaling-mediated cell-cell interaction between the cellular domains highlights the pivotal role of autonomous regulation of the dental mesenchyme. Importantly, we reveal cell-type-specific gene regulatory networks in the dental mesenchyme and show that Foxp4 is indispensable for the differentiation of periodontal ligament. Our single-cell atlas provides comprehensive mechanistic insight into the cell fate diversification process of the cranial neural crest cell-derived odontogenic populations.

View All Publications